Work through the ChemCAL module "Molecular Shape and Structure".

1. Give the approximate bond angle at the atoms indicated by arrows in the following compounds.

2. For each of the following molecules or ions,

 H_2O $NH_2^ CH_3^+$ $CH_3^ CO_3^{2-}$ H_2CO

- (a) Use valence shell electron pair repulsion (VSEPR) theory to draw a diagram showing the arrangement of valence shell electron pairs (σ and, where appropriate π , and non-bonding).
- (b) Describe the shape of the molecule or ion in words.
- (c) Indicate the hybridisation state of the central atom.
- 3. Complete the following table. NH₃ is given as an example.

Species	Number of electron pairs around central atom	Number of bonding pairs around central atom	Number of non- bonding pairs around central atom	Geometry of molecule
NH ₃	4	3	1	trigonal pyramidal
SF_6				
ClF ₃				
SF ₄				

4. The dipole moments and boiling points of CH_2F_2 , CH_2Cl_2 and CH_2Br_2 are listed in the table below.

Compound	CH_2F_2	CH ₂ Cl ₂	CH ₂ Br ₂
Dipole moment, μ (D)	1.93	1.60	1.43
Boiling point (°C)	-52	41	99

- (a) What intermolecular forces operate in these compounds?
- (b) Briefly explain why the boiling points increase in this order $CH_2F_2 < CH_2Cl_2 < CH_2Br_2$.

5. The structure of the hormone adrenaline is shown below. For each of the areas **A**, **B**, **C** and **D** indicate the types of intermolecular interaction likely to be important in binding the hormone to a receptor.

6. Bones contain the mineral hydroxyapatite, $Ca_{10}(PO_4)_6(OH)_2$. A synthetic sample of hydroxyapatite was prepared by reacting 0.090 M sodium phosphate solution (200 mL) with a 0.10 M calcium chloride solution (400 mL) according to the following equation.

 $3PO_4^{3}(aq) + 5Ca^{2+}(aq) + 2H_2O(1) \rightarrow Ca_5(PO_4)_3(OH)_2(s) + H_3O^+(aq)$

- (a) What is the maximum amount (in mol) of $Ca_{10}(PO_4)_6(OH)_2$ that can precipitate?
- (b) What is the final concentration of Cl-(aq) ions remaining in solution after the reaction?